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Possible Improvements of the Interaction Energy 
Calculated Using Minimal Basis Sets 
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Interaction energies for H20.  HzO, HzO. F -  and H20.  CH4 have been calcu- 
lated using the LCAO MO SCF method with minimal basis sets, and employing 
the counterpoise method to eliminate the basis set superposition error. The 
results compare favourably with those obtained using extended basis sets. It  is 
shown that for H 2 0 - H z O  and for the benzene-carbonyl cyanide complex a 
large part of the dispersion energy can easily be obtained as a sum of bond-bond 
dispersion energies calculated from a London-type formula using experimental 
values of  the bond polarizability tensors. By considering the interaction between 
a water and a glycine molecule it is also shown that the dispersion energy plays 
an important role in the hydration of organic molecules. 
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I. Introduction 

Quantum chemists have been quite successful in explaining and predicting proper- 
ties of  isolated molecules. Since, however, most systems of chemical or biochemical 
interest under normal conditions are not in the gas phase, the next obvious step 
was an extension of the quantum chemical approach to systems composed of two 
or more molecules, i.e. a study of intermolecular interactions and of their influence 
on molecular properties. 

Most of the methods used to study the intermolecular i,lteractions are based either 
on the variational or on the perturbational approaches. In the variational approach 
the selfconsistent field (SCF) method is usually employed. To account next for 
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electron correlation one has to go beyond the independent particle model by using 
e.g. the configuration interaction (CI) method. As typical examples of this approach 
we may quote the calculations performed for two helium atoms [1-3] or for two 
water molecules [4-5]. In the perturbation theory (PT) of intermolecular inter- 
actions a general and simple formalism has recently been developed [6-8] and the 
theory has been employed to the water dimer [6] and to two helium atoms [9] 
including in the latter case also the effect of intraatomic electron correlation. 

However, the present-day computer hard- and soft-ware are still not adequate for 
applications of these sophisticated methods to large systems. Especially when 
multidimensional potential surfaces are needed the computer time and storage 
requirements surpass by orders of  magnitude the present-day possibilities. Hence 
in these cases the only ab initio approach practically applicable is the SCF method 
with minimal or next-to-minimal sets of basis functions (see, e.g., Refs. [10-12]). 
It is also well known, however, that the accuracy of this approach is rather moderate, 
if not poor. Hence any improvement of this method which would not drastically 
increase the computation time is clearly desirable. 

The SCF results obtained using small basis sets suffer obviously from two kinds of 
errors. Errors of the first kind are caused by truncation of the basis, while those of  
the second type are due to the independent particle model. The purpose of the 
present work is to investigate the importance of these errors, as well as the 
possibilities of their partial removal. 

2. Minimal Basis SCF Interaction Energies 

2.1. The Basis Set Superposition Error 

In the SCF approach the energy of interaction between A and B is usually calcu- 
lated as: 

~ln~ = EAB -- ~^ -- ~B (1) 

where ~c (with C = A, B) denotes the SCF energy of the subsystem C calculated 
using the basis set for this isolated subsystem, and LAB is the energy of AB obtained 
using the basis sets of both A and B. It has been recognized for some time [13-25] 
that if a truncated basis is used the energy calculated in the above way suffers from 
the basis set superposition error (BSSE). This error results from the fact that not 
the same basis sets are used to calculate the energies of A, B and AB. The basis set 
for AB comprises the basis sets for both A and B. Hence when calculating the 
energy of  AB the basis set of B improves the energy of A and vice versa. The total 
energy EAB is thus a sum of the improved energies of A and B, denoted below as E^ 
and EB, and of the energy of their interaction. 

One can, however, correct the interaction energy by using the so called counterpoise 
method (CP) [15], i.e., by defining the interaction energy as 

Elnt = E^B -- E^ - E~ (2) 
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where Ec, with C = A, B, denotes the energy of the subsystem C obtained using 
the same basis as in the calculation of  EAB, i.e., the basis of both A and B. This 
approach has been shown to give good results, e.g. in the case of two H2 molecules 
[18] or two Ne atoms [24], whereas for some hydrogen bonded systems the results 
were less satisfactory [17, 23]. 

Recently Groen and van Duijneveldt [25] have shed new light on the problem of 
the BSSE and on the possibilities of its removal. Let us introduce a convenient 
decomposition of the total SCF energy of AB, i.e. of  EAB. Suppose we start the 
SCF calculation with a wavefunction tF = d(q?A �9 ~FB) where ~ '  denotes an idem- 
potent antisymmetrizer and ~FA and ~FB are SCF wavefunctions for isolated A and 
B calculated using only the basis set of A or of B, respectively. The expectation 
value of the complete Hamiltonian calculated using the wavefunction W can be 
expressed as 

E ~  = ~A + ~ + AE'~ (3) 

The lowering of the energy gained by the SCF iterations we shall denote by AE (2~. 
Thus the total SCF energy of AB is 

EA~ = gA + gB "4- AEi~ + AE (z~, (4) 

AE (2~ is often treated as the induction energy. This is justified, however, only if the 
basis sets for the separated systems A and B are nearly complete. If  truncated bases 
are used the SCF iterations perform obviously two jobs: 1) they improve the wave- 
functions of A and B by using the basis set of B and A, respectively; 2) they intro- 
duce the changes into the wavefunctions of A and B due to the presence of the fields 
of B and A, respectively. Only the second effect is related to the induction energy. 
Hence Groen and van Duijneveldt [25] suggest to represent AE (z~ as 

AE (2~ = AA + AB + AE(A~ (5) 

where 

Ac = Ec - gc (6) 

C = A, B, and Ec and gc have been already defined. This gives the total energy in 
the form 

EAB = EA + EB + AEk~ + AEk~ (7) 

and Groen and van Duijneveldt [25] give reasons, both theoretical and numerical, 
to treat the last two terms in Eq. (7) rather than those in Eq. (4) as the interaction 
energy. Thus when truncated basis sets are used the interaction energies calculated 
using Eq. (2) should be superior to those resulting from Eq. (t). 

Equation (7) indicates, however, that even if the energies of the isolated molecules 
are calculated using basis sets of both of them the resulting interaction energies may 
differ considerably from the correct values because of the errors in AE[~. This latter 
quantity represents essentially the first-order interaction energy, i.e. the electro- 
static interaction energy and the first-order exchange energy. It is well known that 
truncated basis sets often give poor charge distributions in molecules, and hence 
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poor interaction energies. Groen and van Duijneveldt [25] suggest to remove this 
deficiency by replacing the electrostatic part of AE~,~, resulting from poor multipole 
moments of the interacting molecules, with a value obtained using accurate or 
experimental multipole moments. 

However, when dealing with large molecules this procedure is not applicable since 
usually accurate values of the multipole moments are not known, and in addition 
the separation of the molecules is not big enough for the multipole expansion of 
the electrostatic interaction to be applicable. On the other hand it is also well known 
[26, 27] that the charge distributions obtained with well balanced small basis sets 
are usually more reliable than those resulting from medium size basis sets. The 
latter usually exaggerate the anisotropy of the charge distribution in molecules, and 
in consequence give too strong electrostatic interaction. Hence one may expect that 
the interaction energies calculated from Eq. (2) using well balanced minimal basis 
sets may be fairly reliable. 

2.2. Results 

In Tables 1 to 3 we present the numerical results obtained for three different systems. 
The energies were calculated using minimal basis sets and energy optimized expan- 
sions of the orbitals in terms Of Gaussian functions [31]. Explicit values of the 
exponents and of the contraction coefficients are given in the Appendix. The 
interaction energies are also shown graphically in Figs. 1 to 6. In each figure three 
curves have been drawn. The broken curve, ~nt, represents the interaction energy 
calculated with the minimal basis set in the usual way, i.e., from Eq. (1). The dotted 
curve, Eint, shows the interaction energy calculated from Eq. (2), i.e. corrected for 
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BSSE using the CP method. The solid curve, AEscs represents the interaction 
energy taken from the literature, calculated using fairly extended basis sets. 

In Table 1 and Figs. 1 and 2 we show the H20.  H20 interaction energies for con- 
figurations B and D as defined by Matsuoka et  al. [5]. The accurate results drawn 
as solid lines are those of the above authors. A repulsive configuration, of two 
water molecules has also been considered, viz. that denoted as type 1 and ~o = 180 ~ 
by Popkie et  al. [28]. For this orientation of the molecules the differences between 
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the energies calculated in different ways were considerably smaller than in the 
previous cases and therefore they are not reported here. For  example, for Roo = 
6 a.u. the interaction energy calculated with the minimal basis set was 3.45 kcal/mole, 
when corrected for BSSE it increased to 3.53 kcal/mole whereas the value obtained 
with a large basis set is 3.85 kcal/mole [28]. 

In Table 2 and Figs. 3 and 4 the results for the HzO. F -  system are presented. They 
correspond to the attractive configurations of  types 5 and 2 as defined by Kisten- 
macher et al. [29]. For  the repulsive configuration of type 1 the BSSE was found to 
be smaller than in the previous two cases and these results are reported only in 
Table 2. 

As the next system we considered CH4. H20 for which the SCF energies obtained 
with extended basis sets became recently available [30]. The interaction energies 
have been calculated for two cases and the results are given in Table 3 and in 
Figs. 5 and 6. In the first case the mutual orientation of the molecules was as shown 
in the inset in Fig. 5 and the carbon-oxygen distance, Rco, was varied. In the second 
case for a constant value of Rco the H20 molecule was rotated around an axis 
perpendicular to Rco as shown in the inset in Fig. 6. 

Finally we made calculations for the H20.  Be 2 + system. In this case the minimal 
basis set results differed considerably from those obtained with extended basis sets 
[32], and only very little improvement could be achieved by removing the BSSE. 
This was due to the fact that the very compact Be 2 + wavefunction is not able to 
improve the H20  wavefunction and vice versa. Hence a small BSSE is obtained. 
On the other hand the minimal basis set for H20  is not flexible enough to describe 
the strong polarization of  this molecule in the field of the doubly charged cation. 
Hence large deviations from the extended basis set results. The actual numerical 
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values of the interaction energies were not interesting enough to be reported 
here. 

2.3. Discussion 

The calculations reported in the previous section have been selected, not to make 
a strong case in faw)ur of the minimal basis set calculations combined with the 
counterpoise method, but to demonstrate also the limitations of this approach. 
The results clearly show that if the counterpoise method is used to remove the 
BSSE it nearly always improves the results. Only in the repulsive configuration 1 
of H20.  F -  the corrected results differ more from the accurate values than the 
uncorrected ones. The difference is not large, and the somewhat too strong repulsion 
in the case of the minimal basis sets is most likely due to inaccurate values of the 
electrostatic interaction energies. This is corroborated by the results for the 
attractive configurations. Here after applying the counterpoise method a fairly 
large error still remains which indicates that the electrostatic interaction between 
H20 and F -  resulting from minimal basis wavefunctions is indeed somewhat 
exaggerated for all configurations. 

At this point we should like to stress again the importance of having wavefunctions 
which give reliable values of the electrostatic energy. Thus erratic interaction 
energies obtained by Kocjan et al. [23] for the H20.  HF complex are not at all 
surprising. The 4-31 basis set is known to exaggerate the anisotropy of the charge 
distribution in molecules [26, 27]. For example, the dipole moment of H20 calcu- 
lated with this basis set is t~ = 2.60 D [26], whereas the experimental value is 
/z = 1.85 D. The STO-2G basis set used also by Kocjan et al. [23] is certainly too 
crude for calculations of the interaction energies as shown by Bulski and 
Cha~asirlski for the neon atoms [24]. The same may apply to the STO-3G basis sets 
which have been optimized by fitting to the Slater-type orbitals. It is known [33] 
that to get in this way orbitals suitable for calculation of the interaction energies 
larger weight should be given to the " ta i l "  of the orbitals than to the region close 
to the origin. 

To show more convincingly that the criticism of the counterpoise method by 
Kocjan et aL [23] was not justified we have calculated the binding energy of 
H20.  HF using the standard minimal basis sets given in the Appendix. The calcula- 
tion was made for the geometry of the complex reported by Dill et al. [34]. Without 
the counterpoise method, i.e. from Eq. (1), we obtained ~nt = - 12.55 kcal/mole, 
whereas when using the counterpoise method to remove the BSSE, i.e. from 
Eq. (2), we obtained Eint = -9 .03  kcal/mole. Since the interaction energy obtained 
with a considerably more extended 6-31G* basis amounts to -9 .2kcal /mole ,  
this proves that also for H 2 0 . H F  a well balanced minimal basis set, together 
with the counterpoise method, gives a reliable interaction energy. 

In the case of the CH4. H20 interaction for ~ = 180 ~ the corrected energy is also 
somewhat too high. To rationalize this result we will point out that for H20 the 
minimal basis set gives a realistic charge distribution (net charge on oxygen qo = 
-0 .664  as compared with qo = -0 .669 obtained using an extended basis set). For 
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CH4, however, the charge distribution is considerably less accurate (qc = -0 .778  
from the minimal basis set and qc = -0 .308  from an extended one). The poor 
charge distribution in CH4 may be responsible for a large part  of  the remaining 
discrepancy in the CH4. H20 interaction. This can be shown by calculating the 
energy of the electrostatic interaction using the point charges resulting from the 
minimal and from the extended basis sets for the isolated molecules. I f  one sub- 
tracts from the interaction energy the former value and adds the latter for ~0 --- 180 ~ 
the energy decreases by 0.41 kcal/mole, and for ~0 = 0 ~ it increases by 0.55 
kcal/mole. In both cases the correction works in the right direction and removes 
part  of  the discrepancy between the corrected energies obtained with the minimal 
basis sets and those resulting from the extended ones. 

The values of  A, i.e. the lowerings of  the energy of  a molecule due to the augmenta- 
tion of its basis set with that of  the second molecule show a clear regularity which 
has also been noticed for the H F  dimer [25]. For the systems under consideration 
in most cases we can distinguish a proton donor and a proton acceptor molecule. 
I t  is seen from the Tables 1 to 3 that the value of A for the proton acceptor is 
considerably larger than that for the proton donor. Johansson et al. [17] have 
argued that this results from improvement of  the core ls orbital in the proton 
acceptor molecule. On the other hand Groen and van Duijneveldt [25] have shown 
that  in (HF)2 the improvement of  the 3~r orbital of the proton acceptor is responsible 
for the large value of h. 

We found it impossible to attribute unambiguously the BSSE to particular orbitals. 
In Tables 4 and 5 we list the total energies, E, and the orbital energies, e~, for the 
H20  and CH~ molecules, respectively, calculated with the extended basis sets and 
the errors in these values when they are calculated using the minimal basis sets or 
double basis sets. For H20  the latter is the H 2 0 - H 2 0 '  minimal basis set corre- 
sponding to configuration D and Roo = 4.5, and for CH4 it is the CH4-H20 
minimal basis set corresponding to Rco = 6 a.u. and ~0 = 180 ~ The following 
conclusions follow immediately from the tables. The orbital energies calculated 
with the minimal basis set can be either higher (H20) or lower (CH4) than the more 
accurate values. I f  the minimal basis set is extended by adding the basis of  the 
second molecule one gets in both cases roughly the same lowering of the total 
energy. The changes of  the orbital energies are, however, completely different. In 
the case of H20  one gets indeed a very significant stabilization of  the oxygen core 
orbital, and the error in the energy of this orbital decreases to less than 40~o of its 
original value. The changes of other orbital energies are definitely smaller but also 

mmln mdim 

E -76.0593 0.3262 0.3198 
el --20.5637 0.0342 0.0128 
~2 - 1 . 3 5 3 4  0.0226 0.0128 
ea --0.7182 0.0356 0.0266 
~4 --0.5825 0.0347 0.0272 
~s --0.5085 0.0038 --0.0059 

Table 4. Total and orbital energies for the 
H20 molecule calculated using extended 
basis set, and the errors made when these 
values are calculated with the minimal basis 
set for H20 (Amtn) or a minimal basis set for 
the dirner (Adam) corresponding to configura- 
tion D and Roo = 4.5 (in atomic units) 
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Table 5, Total and orbital energies for the CH~ 
molecule calculated using extended basis set, and the 
errors made when these values are calculated with 
the minimal basis set for CH4 (Amin) or a minimal 
basis set for CH4.H20 (Aaim) corresponding to 
R = 6 and ~o = 180 ~ (in atomic units) 

Amln Adlm 

E - 40.2104 0.2245 0.2221 
ex - 11.2077 --0.1729 -0.1709 
e2 - 0.9414 - 0.0502 - 0.0484 
e~ - 0.5443 - 0.0562 - 0.0551 
e4 - 0.5443 - 0.0562 - 0.0540 
~5 - 0.5443 - 0.0562 - 0.0540 

considerable .  In  the case of  CH4 the changes o f  orbi ta l  energy caused by add ing  
the basis set o f  the water  molecule  are  all o f  the same order  and  much smal ler  
than  in the case o f  1:I20. 

F o r  a water  molecule  which acts as a p ro ton  donor  the changes o f  orbi ta l  energies 
caused by adding  the,, basis set o f  the second molecule  are small.  However ,  the energy 
lowering o f  the core orbi ta l  is at  least  twice as large as tha t  of  any  other  orbi tal .  

F ina l ly  we notice that  by adding  the basis set of  the  second molecule  the sum of  the 
orb i ta l  energies o f  all the electrons changes by at  least one order  o f  magni tude  more  
than  the to ta l  energy. Hence the final s tabi l izat ion o f  the molecule  is a small  net 
result  of  large changes of  the orbi ta l  energies and of  the energies o f  in teract ion 
between the electrons. Therefore  it is not  possible to a t t r ibute  it  to changes 
occurr ing  in a par t icu la r  orbi ta l .  

3. The Dispersion Energy 

3.1. Method 

As ment ioned  in the In t roduc t ion  a CI or  PT calculat ion o f  the dispers ion energy 
is feasible only for small  systems since large basis sets are required.  Ab initio disper-  
sion energies calculated using small  basis sets seem to be comple te ly  unrel iable  [35]. 
F o r  large separa t ions  of  the interact ing molecules the dispers ion energy can also be 
ob ta ined  f rom the well known London  fo rmula  [36] which relates it to the polar iz-  
abili t ies of  the molecules.  In  the case of  large molecules,  however,  their  dimensions 
are  not  small  in compar i son  with in termolecular  separa t ions  o f  chemical  interest  
and  therefore  the London  fo rmula  is not  applicable.  F o r  such systems the to ta l  
dispers ion energy can be assumed (see Ref. [37] and references therein) to be given 
by a sum of  cont r ibu t ions  due to the dispersion interact ion between the bonds  i and  
j o f  the interact ing molecules A and B respectively. 

= E E (8) 
t~A .fEB 

The individual  cont r ibu t ions  can be convenient ly  calcula ted using a fo rmula  
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derived by Claverie [37] which is essentially the London formula for the dispersion 
interaction of two linear molecules with anisotropic polarizabilities 

~j _ 1 U A U8 1 
E~i~p 4 UA + UB R~j Tr [T~jA,T~jAj] (9) 

where UA and UB are some average excitation energies usually related to the 
ionization potentials of  A and B respectively, R,j = [R~j[ where R,j denotes the 
vector joining the midpoints of bond j in molecule B and bond i in molecule A, 
A, and A t are the polarizability tensors of the two bonds, and T~j denotes the tensor 

T~j = 3(r,j Q r,j) - 1 (10) 

where r~j = R~j/R~y. 

Evaluation of the expression in the square brackets in Eq. (9) gives 

Tr [T~jA,T~jAj] = 6~T@" + 8~[3(r , j .e ,)  2 + 1] + ~ictT[3(r~j.e~) 2 + 1] 

+ 3i3j[3(r~j. ei)(r~j, ej) - (e~. ej)] 2 (11) 

where c, T denotes the transverse polarizability, 3 the anisotropy of the polarizability 
defined as ~ = ~L _ ~T, where a~' is the longitudinal polarizability. The indices i 
and j refer to the bonds in molecules A and B, respectively, and e~ and e~ are the 
unit vectors in the directions of the bonds indicated by their indices. 

In principle both the theoretical and experimental bond polarizabilities can be used 
in Eq. (11). At present, however, only the experimental values are available [38, 39]. 
In our work standard values of c~ T and 3 have been employed [38, 40]. For Uc 
(C = A, B) London recommended to use the ionization potentials. It has been 
noticed many times, however, that more realistic dispersion energies are obtained 
if U has a value about twice the ionization potential. For some molecules, such as 
H20 or CH4, the value of U can be determined from the experimental value of C6, 
i.e. of  the coefficient at R -6 in the London formula. Using C6 -- 45.4 a.u. [41] and 
150 a.u. [42], a = 9.63 a.u. [41] and 17.54 a.u. [43] for H20 and CH4, respectively, 
one gets from the London formula U~2o = 0.653 a.u. and UcH~ = 0.650 a.u., i.e. 
almost identical values. In view of this the value U = 0.65 a.u. has been used also 
in other cases discussed in the next subsection. From these results, by simple 
scaling, the dispersion energies corresponding to other values of U can be obtained. 

3.2. Resu l t s  and Discussion 

Little is known about the reliability of the dispersion energies calculated from 
Eqs. (8-11). We start this subsection therefore with a test performed for the water 
dimer for which accurate ab initio dispersion energies are available. The results 
obtained with ~oTa = 3.91 a.u., ~oa = 1.42 a.u., Ui~2o = 0.653 a.u. are listed in 
Table 6 and compared with the ab initio values. Configurations B and D are those of 
Matsuoka et  al. [5] and our dispersion energies are compared with their inter- 
molecular correlation energy. The stable dimer configuration is that determined by 
Popkie et  al. [28] and used by Jeziorski and van Hemert [6] to calculate the dis- 
persion energy for several intermolecular distances and the same mutual orientation 
of the molecules. 
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Table 6. Dispersion energy for the H20. H20 interaction (in kcal/mole) 
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Configuration B Configuration D Stable dimer 

Roo ~ Eq. (8) b Roo ~ Eq. (8) b Roo ~ Eq. (8) ~ 

4.5 -2.47 --2.64 4.5 -2.47 -2.64 4.0 -6.50 -14.46 
5.0 - 1.35 - 1.44 5.0 -- 1.51 - 2.30 4.4 - 3.59 -- 8.41 
5.5 -0.78 -0.81 5.5 -0.87 -1.37 4.8 -2.10 -4.89 
6.0 -0.47 -0.46 6.0 -0.51 -0.74 5.2 --1.28 -2.85 
7.0 -0.19 -0.16 7.0 --0.20 -0.24 5.67 -0.75 -1.54 
8.0 -0.09 -0.06 8.0 --0.09 -0.09 7.0 -0.21 -0.31 
9.0 -0.04 -0.03 9.0 -0.04 -0.04 9.0 -0.05 -0.05 

The O...O distance, Roo, in a.u. 
b Results from Ref. [5]. 

Results from Ref. [6].. 

The results of Jeziorski and van Hemert [6] for the water dimer represent probably 
the most accurate dispersion energies for a medium size system. We see from Table 6 
that in the vicinity of the equilibrium Eq. (8) gives about 50~o of the dispersion 
energy. A large part of the missing 50~ is certainly due to the higher terms in the 
multipole expansion of the interaction Hamiltonian and to the charge overlap 
effects. On the other hand in Sect. 2 we have shown that the minimal basis set, even 
with the counterpoise method, usually exaggerates attraction. Hence if the total 
energy is calculated as the sum of minimal basis set SCF energy and of the disper- 
sion energy obtained from Eq. (8) a partial cancellation of errors may occur 
increasing the accuracy of the final results. In Fig. 7 we show the interaction energy 
for the water dimer calculated in the above way. The broken line represents the 
SCF energy obtained with the minimal basis set from Eq. (1). The upper dotted 
line shows the same energy corrected for the BSSE, i.e. from Eq. (2), and the lower 
one includes in addition the dispersion energy calculated from Eqs. (8-11). The 
two solid lines represent the results of Jeziorski and van Hemert [6]. The upper 
curve is their SCF result and the lower one includes also their dispersion energy, 
both calculated using extended basis sets. A partial cancellation of the residual 
error in Elnt and Eaj:sp is clearly seen. 

To test the reliability of Eq. (8) for larger systems calculations have been made for 
the carbonyl cyanide-benzene complex. Its binding energy is mainly due to the 
dispersion interaction, and hence the SCF method alone is not sufficient to account 
for the binding. Lathan et al. [35] have made an ab initio study of the complex 
using the STO-3G basis sets. The planes of the two molecules were assumed to be 
parallel to each other, with one molecule stacked on the other. A limited search of 
the equilibrium geometry has been made by the above authors on the SCF level. 
Next the dispersion energy has been calculated in the second order of the perturba- 
tion theory and summing over the excited configurations resulting from the STO-3G 
basis set. The calculations have been carried out for several values of the distance, 
R, between the two molecular planes. The results of Lathan et al. [35] are displayed 
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in Fig. 8. The upper solid line denotes their SCF energy and the lower one the sum 
of their SCF and dispersion energies. 

When applying Eq. (8) there is some arbitrariness in choosing the values of U in 
Eq. (9). In Table 7 we give the dispersion energies obtained using for both molecules 
U = 0.65 a.u. Since this is the value for H20 and CH~ it certainly represents the 
upper limit for both the benzene and the carbonyl cyanide molecules. For other 
values of U the dispersion energies can be obtained from those given in Table 7 by 

5 

.a( 

o 

-5. 

~ ~  int 
',, ' ~  sp(PT) 

'\ . u = 0.50 
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Fig. 8. Benzene-carbonyl cyanide inter- 
action energy 
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Table 7. Benzene-earbonyl cyanide interaction energies (in kcal/mole) 
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R STO-3G a UA = UB = 0.65 UA = UB = 0.50 

A a.u. ai.t Eal~p Eaiap Eai~v Eal~p Edi.p Edl~p 

2.8 5.29 8.54 -10.69 -2.15 -8.22 0.32 
3.0 5.67 3.10 -2.14 0.96 -7.66 -4.56 -5.89 -2.79 
3.2 6.05 0.69 - 1.57 -0.88 - 5.58. -4.89 -4.29 - 3.60 
3.6 6.80 -0.65 -0.89 -1.54 -3.13 -3.78 -2.41 -3.06 
3.8 7.18 -0.70 -0.69 -1.39 -2.38 -3.08 -1.83 -2.53 
4.0 7.56 -0.68 -1.83 -2.51 -1.14 -2.09 

a Results from Ref. [3511. 

simple scaling. Thus in Fig. 8 we give two results represented by the dotted curves. 
They were obtained by adding to the SCF energy of Lathan et al. [35] the dispersion 
energy calculated from Eq. (8) using UA = UB = 0.65 in Eq. (9) (lower curve) and 
UA = U~ = 0.50 (upper curve). As seen in Fig. 8 the results compare favourably 
with the experimental binding energy E~ ~ 5 kcal/mole, and the equilibrium inter- 
molecular distance 5.9 < Re < 6.6 a.u. One can obviously raise many objections 
with regard to the dispersion energies calculated from Eqs. (8-11). The results, 
however, clearly show that the numerical values are much more reliable than those 
obtained in an ab initio second-order perturbation theory approach employing 
small basis sets. This also indicates that there is no possibility at present of  calculat- 
ing accurate ab initio dispersion energies for systems containing more than 
20-30 electrons. 

As the final example we have considered hydration of the glycine (GLY) molecule. 
The problem has recently been treated by Clementi et al. [10]. Using the SCF 
method with minimal basis sets the above authors calculated the GLY.  H20 inter- 
action energy for many geometrical configurations of the system and fitted an 
analytical potential to the computed points. Next a grid of  points has been con- 
structed and with the oxygen atom fixed at each of the points the H20 molecule 
has been rotated to minimize its interaction energy with the GLY molecule. We 
have repeated the last step of this work supplementing the fitted potential with the 
dispersion energy calculated from Eq. (8). 

The dispersion energy calculated from Eq. (8) is quite sensitive to the mutual 
orientation of the interacting molecules. As a consequence the orientation of H20 
with respect to GLY in some regions has been found to change drastically by in- 
clusion of the dispersion energy in the interaction potential. To illustrate this let us 
consider a plane defined by the N, CA and C' atoms of GLY (Fig. 9). Let us also 
consider an H20 molecule moving in this plane along the line parallel to the N - - C '  
axis at a distance 5.83 a.u. from it. In Figs. 9 and l0 we show in scale the projection 
of the glycine molecule on the plane under consideration and the line along which 
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Fig. 9. Orientations of H20 in the 
analytical potential [10] obtained by fit- 
ing to the H20.GLY SCF interaction 
energies 

a water molecule is moved with its oxygen atom kept on this line. In addition for 
several positions of the oxygen atom we show the projections of H20 corresponding 
to the minimum of the interaction energy with the glycine molecule. The orienta- 
tions displayed in Fig. 9 were determined using the potential fitted to the minimal 
basis set SCF results [10]. Those shown in Fig. 10 were obtained using the same 
potential plus the dispersion energy calculated from Eq. (8). The interaction energy 
for both cases is shown graphically in Fig. 11. 

The dispersion energy is seen to constitute a large fraction of the total interaction 
energy. Moreover in some regions it turns out to be a structure determining factor. 
Thus we see from Fig. 9 that if a water molecule moves in the SCF-fitted potential, 
along the line under consideration, only in the vicinity of the oxygen atom it points 
with its OH bonds towards the glycine molecule. If, however, the dispersion inter- 
action is switched on (Fig. 10), the water molecule in the vicinity of the nitrogen 
atom turns around and points with one or even with two of its OH bonds towards 
the nitrogen atom of GLY. It is of course impossible to predict whether such a 
dramatic effect of the dispersion interaction would also be obtained if a more 
accurate SCF potential were used. The global minima of the H20- GLY interaction 
energy are determined mainly by the electrostatic interaction. Hence it is also 
difficult to predict how the dispersion energy would affect the statistical distribution 
of the water molecules around a glycine molecule, as determined e.g. by the Monte 
Carlo method [44]. It is, however, clear that quantitatively the dispersion energy 
constitutes a very important component of the interaction energy. 
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Fig. 10. Orientations of H20 in the poten- 
tial obtained by adding the dispersion 
energies from Eq. (8) to the analytical 
potential [10] fitted to the H20-GLY 
interaction energies 



Possible Improvements of the Interaction Energy 237 

2O r~ 
\ 
\ 

/' 

Fig. 11. H20. GLY interaction energies 
corresponding to the orientations 
shown in Fig. 9 (broken line) and in 
Fig. 10 (solid line) 

4. Conclusions 

We have shown that on the SCF level fairly reliable interaction energies can be 
obtained using well balanced, carefully optimized minimal basis sets, provided the 
counterpoise method is employed to eliminate the basis set superposition error. 
Erratic results obtained by some authors have been shown to be due to their use of  
poor basis sets yielding unrealistic charge distributions in the molecules, and hence 
a wrong electrostatic contribution to the interaction energy. This approach is now 
being extended to study the nonadditive effects in the interaction of three water 
molecules. 

We have also shown that a large part  of  the dispersion energy can be obtained by 
summing the bond-bond contributions and calculating the latter from a London- 
type formula using empirical values of  bond polarizabilities. The importance of the 
dispersion energy is demonstrated for the water-glycine interactions where in some 
regions it drastically affects the mutual orientation of the two molecules. Thus the 
SCF approach with the minimal basis sets and the counterpoise method, supple- 
mented with the semiempirical evaluation of the dispersion energy seems to provide 
the most reliable practical possibility of  calculating the interaction energies for large 
systems. 
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Appendix 

The minimal basis sets used in the present work for the first-row atoms were the 
(7, 3) basis sets of  Ref. [31 ], contracted to [2, 1 ] using the 5, 2 contraction for the s 
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orbitals, and the (3) basis set contracted to [1] for the hydrogen atom. The exponents 

and contract ion coefficients are given below. 

H 
s 0.450180 + 01 0.7045200 - 01 

s 0.681444 + 00 0.4078260 + 00 

s 0.151398 + 00 0.6477520 + 00 

C 
s 0.126718 + 004 0.5446000 - 002 

s 0.190604 + 003 0.4052600 - 001 

s 0.432477 + 002 0.1797890 + 000 

s 0.119649 + 002 0.4600020 + 000 

s 0.366312 + 001 0.4445940 + 000 

s 0.539158 + 000 0.5048600 + 000 
s 0.167130 + 000 0.6131250 + 000 

p 0.418735 + 001 0.1119220 + 000 

p 0.854053 + 000 0.4650780 + 000 
p 0.199770 + 000 0.6237560 + 000 

O 
s 0.233157 + 04 0.5123700 - 02 

s 0.350640 + 03 0.3821460 - 01 

s 0.795965 + 02 0.1712167 + 00 

s 0.221200 + 02 0.4432487 + 00 

s 0.682063 + 01 0.4824137 + 00 

s 0.107057 + 01 0.4522493 + 00 
s 0.321511 + 00 0.6081251 + 00 

p 0.374851 + 00 0.6160137 + 00 

p 0.168471 + 01 0.4751496 + 00 
p 0.814220 + 01 0.1222798 + 00 

F 
s 0.296744 + 04 0.5325000 - 02 
s 0.446335 + 03 0.3945700 - 01 

s 0.101394 + 03 0.1789100 + 00 

s 0.282336 + 02 0.4558750 + 00 
s 0.873184 + 01 0.4617030 + 00 
s 0.140169 + 01 0.4184800 + 00 

s 0.416741 + 00 0.6412680 + 00 
p 0.105598 + 02 0.1265640 + 00 
p 0.219298 + 01 0.4796120 + 00 

p 0.478821 + 00 0.6122370 + 00 

F -  
s 0.310839 + 04 0.5035000 - 02 
s 0.466540 + 03 0.3746600 - 01 
s 0.105916 + 03 0.1711050 + 00 
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s 0.2946061 + 02 0.4468450 + 00 

s 0.900942 + 01 0.4797520 + 00 

s 0.136411 + 01 0.4266370 + 0 0  
s 0.373399.+ 00 0.6409180 + 0 0  
p 0.955809 + 01 0.1316350 + 00 
p 0.193039 + 01 0.4800720 + 00 
p 0.3735421 + 00 0.6283670 + 00 
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